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The bifurcation ratio for the equiprobable binary tree model is formulated. We obtain the exact expression of
the kth moment of the second-order streams. We also obtain a recursive equation between rth and �r+1�th
order streams. Horton’s law is confirmed numerically by calculating this recursive equation and asymptotic
properties of the bifurcation ratio are discussed.
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I. INTRODUCTION

Branching patterns are widely found throughout nature
�e.g., Ref. �1� or �2��. Some of them have been characterized
from the viewpoint of self-similarity or self-affinity, and the
fractal dimension of these patterns has also been measured.
Fractality of some branching patterns has been proved ex-
perimentally �3�, theoretically �4�, or numerically �5�.

In order to characterize branching patterns, a method
which reflects hierarchical structures of branching patterns is
also needed. One such method, the ordering of river net-
works, was originally introduced by Horton �6� and modified
by Strahler �7�. Their method, called “Horton-Strahler order-
ing,” is defined as follows. �i� A stream originating from a
source has order 1. �ii� Joining of two streams of order r
arises a stream of order r+1. �iii� Merging of streams of
order r1 and r2 �let r1�r2� forms a stream of order r1. Then,
Horton’s law of stream numbers �8� is stated as

Sr

Sr+1
� 4, �1�

where Sr represents the number of streams of order r and
“�” denotes an approximate equality.

The Horton-Strahler analysis is valid for branching pat-
terns containing no islands or junctions of more than three
streams �8,9�; the branching structures of these patterns are
topologically modeled by binary-tree graphs. In this sense,
the outlet of a river network corresponds to the root of a
binary tree and a source corresponds to a leaf �i.e., degree-
one node except the root�. In fact, many branching patterns
have been analyzed by Horton-Strahler ordering �e.g., DLA
patterns �10–12�, bronchial trees �13,14�, percolation cluster
growth �15�, and neural networks �16��. As the case of river
networks, we also use “source” instead of “leaf” of a binary
tree. The number n of sources is called “magnitude” and
“stream” means the maximal connected path of incident
nodes of the same order.

According to the notation of Wang and Waymire �17�, let
�n be the sample space of topologically distinct binary trees
of magnitude n. The cardinality of �n is given by

��n = cn−1 �
1

n
�2n − 2

n − 1
� ,

where “�” denotes the cardinality of a set and cn−1 is called
the �n−1�th Catalan number. For each T��n, the uniform

probability measure Pn assigns probability 	�n	−1. This
model was originally introduced by Shreve �8�, which is
called the S model by Werner �18� or equiprobable binary
tree by Devroye and Kruszewski �19�. Hereafter we adopt
Sr,n as a random variable on �n, which indicates the number
of rth order streams. By using the averaged value of Sr,n over
�n �which is denoted by E�Sr,n��, Horton’s law of stream
numbers �1� can be expressed more accurately as

lim
n→�

E�Sr,n�
E�Sr+1,n�

= 4. �2�

The ratio E�Sr,n� /E�Sr+1,n� is called “bifurcation ratio.” This
equiprobable model is the simplest way of selecting a binary
tree of fixed magnitude.

In this paper, we calculate the kth moment of S2,n on the
equiprobable binary trees. To do this, we introduce “hierar-
chical hanging” of the perfect binary trees by hanging the
perfect binary trees sequentially. The result is expressed by
using the hypergeometric function. Then, we derive a recur-
sive equation between the kth moment of the rth and �r
+1�th order streams. By using this recursive equation, the
Horton’s law of stream number is proved numerically and
analytically.

II. MODIFIED BINARY TREE AND PERFECT
BINARY TREE

For the convenience of the following calculation, let an
“imaginary” node join to the root of a binary tree. We as-
sume that this node has no Horton-Strahler number �see
Fig. 1�.

1 1
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2root
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12

2

imaginary node

(a) (b)

FIG. 1. A binary tree of magnitude 3 �n=3�. �a� Ordinary binary
tree. �b� Modified binary tree. The number on each node shows its
own Horton-Strahler number.
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There is a special type of a binary tree called the r-perfect
�or r-complete� binary tree: every source has the same depth
�=distance from the root� r−1 �see Fig. 2 for reference�.

Perfect binary trees have some remarkable characteristics:
�1� the magnitude of a r-perfect binary tree is 2r−1, �2� the
Horton-Strahler number of a r-perfect binary tree is r, and
�3� S�T��r, for any binary tree T of a magnitude less than
2r−1. From these features, the r-perfect binary tree is found to
be a minimal structure which contains streams of rth order.

III. CALCULATION OF THE SECOND ORDER
STREAMS

As mentioned above, a random variable S2,n denotes the
number of second-order streams in the binary tree of magni-
tude n. Notice that the range of S2,n is 
1,2 , . . . , �n /2�� for
n�2, where �¯� is the floor function.

In this section, let us calculate the value

N�n,m� � �
T � �n	S2,n�T� = m� ,

which represents the number of binary trees in �n with m
second-order streams. Using this, an average and kth mo-
ment of S2,n are expressed as

E�S2,n� = �
m=1

�n/2�
mPn�S2,n = m� =

1

cn−1
�
m=1

�n/2�
mN�n,m� ,

Mk�S2,n� = �
m=1

�n/2�
mkPn�S2,n = m� =

1

cn−1
�
m=1

�n/2�
mkN�n,m� , �3�

where Mk�¯� denotes the kth moment over �n. A second-
order stream arises from merging of two streams of order 1.
Then, when a binary tree T��n has m second-order streams,
m pairs of two sources merge to produce the second-order
streams and the rest of the n−2m sources attach to second-
or higher-order streams.

Then, a procedure to make a binary tree of magnitude n
having m second-order streams is given as follows �see Fig.

3 for reference�. �a� Make a binary tree of magnitude m. �b�
Replace every source with a 2-perfect binary tree. �c� “Hang”
n−2m sources from edges of this binary tree, except for the
edges of order 1. �d� Change each hanging point into a node
of a binary tree.

According to the above procedure, N�n ,m� is given by

N�n,m� = 2n−2mcm−1� n − 2

n − 2m
� = 2n−2m �n − 2�!

�n − 2m�!m!�m − 1�!
,

�4�

where the factor cm−1 represents the number of topologically
distinct binary trees of magnitude m, � n−2

n−2m � represents the
number of different ways of n−2m sources selecting which
edge to hang, and 2n−2m represents the multiplicity of hang-
ing from the right or the left for each hanging source. Equa-
tion �4� is essentially the same as that obtained by Shreve
�8�. However, it is advantageous that our method for calcu-
lation of N�n ,m� can be generalized easily to the calculation
of higher-order streams, as shown below.

From Eqs. �3� and �4�, the kth moment of S2,n is expressed
as

Mk�S2,n� =
1

cn−1
�
m=1

�n/2�
mk2n−2m �n − 2�!

�n − 2m�!m!�m − 1�!
.

By using the function G�x� defined by

G�x� =
1

cn−1
�
m=1

�n/2�
2n−2m �n − 2�!

�n − 2m�!m!�m − 1�!
xm,

the kth moment of S2,n is rewritten as

Mk�S2,n� = 
�x
d

dx
�k

G�x�

x=1

.

It is noted that the function G�x� is calculated as

G�x� =
2n−2

cn−1
xF�2 − n

2
,
3 − n

2
;2;x� ,

where F�� ,� ;	 ;x� is the Gauss hypergeometric function de-
fined by

F��,�;	;x� =

�	�


���
����n=0

�

�� + n�


�� + n�
�	 + n�
xn

n!
.

Therefore, Mk�S2,n� is obtained by
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FIG. 2. Some examples of a perfect binary tree. �a� 2-perfect
binary tree, �b� 3-perfect binary tree, and �c� 4-perfect binary tree.

��� ��� ��� ���

���	
�	
� FIG. 3. Procedure to make a binary tree in the
case of n=14, m=5. �a� A binary tree of magni-
tude 5, where � represents leaf. �b� Replacing �

nodes with two perfect binary trees. �c� Hanging
4�=n−2m� nodes �gray nodes are hanging nodes�.
�d� Remaking the binary tree.
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Mk�S2,n� =
2n−2

cn−1
�x

d

dx
�k

x
F�2 − n

2
,
3 − n

2
;2;x�


x=1

=
2n−2

cn−1
� d

dx
x�k
F�2 − n

2
,
3 − n

2
;2;x�


x=1
. �5�

For instance, using the Gauss formula

F��,�;	;1� =

�	�
�	 − � − ��

�	 − ��
�	 − ��

�6�

yields

F�2 − n

2
,
3 − n

2
;2;1� =

�2n − 2�!
2n−2�n − 1�!n!

=
cn−1

2n−2 . �7�

And by using the formula

d

dx
F��,�;	;x� =

��

	
F�� + 1,� + 1;	 + 1;x� , �8�

the average and the second moment of S2,n are expressed as

E�S2,n� =
n�n − 1�

2�2n − 3�
,

M2�S2,n� =
n�n − 1��n2 − n − 4�
4�2n − 3��2n − 5�

. �9�

Then, the variance of S2,n is given by

var�S2,n� = M2�S2,n� − E�S2,n�2 =
n�n − 1��n − 2��n − 3�

2�2n − 3�2�2n − 5�
.

�10�

It is noted that Eqs. �9� and �10� are equivalent to the result
by Werner �18� and Wang and Waymire �17�.

IV. CALCULATION OF THE rth ORDER STREAMS

In this section, let us calculate the value

N�n,n2,n3, . . . ,nr� � �
T � �n	Si,n�T� = ni,i = 2,3, . . . ,r� ,

which represents the number of binary trees in �n with n2
second order streams, n3 third order streams,…, and nr rth
order streams.

It is noted that a minimal structure containing rth order
streams is the r-perfect binary tree. Similar to the procedure
described in the previous section, a procedure to make a
binary tree of magnitude n having ni ith ordered streams �i
=2,3 , . . . ,r� is as follows �see Fig. 4 for reference�: �a� make
a binary tree of magnitude nr, �b� replace every source with
r-perfect binary tree, �c� “hang” nr−1−2nr sources from the
edge of this binary tree, except for the edges of order less
than r, �d� replace every hanging source with �r−1�-perfect
binary tree, �e� hang nr−2−2nr−1 sources from the edge of the
binary tree, except for the edges of order less than r−1, then
replace every hanging source with �r−2�-perfect binary tree,
and so on. In short, perfect binary trees are hung hierarchi-
cally through this method.

According to the above procedure, N�n ,n2 ,n3 , . . . ,nr� is
calculated as

N�n,n2,n3, . . . ,nr� = cnr−1�
i=1

r−1

2ni−2ni+1� ni − 2

ni − 2ni+1
� ,

where n1�n. The factor cnr−1 represents the number of to-
pologically distinct binary trees of magnitude nr, � n−2

ni−2ni+1
�

represents the number of different ways of ni−2ni+1 sources
selecting which edge to hang, and 2ni−2ni+1 represents the
multiplicity of hanging from the right or the left for each
hanging source �i=r−1,r−2, . . . ,2�. The case where nr=1 is
consistent with the result by Shreve �8�.

Notice that the ith order stream is merely formed by join-
ing two streams of �i−1�th order. If the values n and nr are
fixed, 2r−inr�ni� �ni−1 /2� holds for i=2,3 , . . . ,r. Hence

�
T � �n	Sr,n�T� = nr�

= �
n2=2r−2nr

�n/2�

�
n3=2r−3nr

�n2/2�
¯ �

nr−1=2nr

�nr−2/2�
N�n,n2,n3, . . . ,nr�

is obtained. Since 0�nr� �n /2r−1� is also confirmed, the kth
moment of Sr,n is expressed as

���
���

���

���	
�	
�

���

��� �
�

���	
�	
�

�����
��� ��	��� ����

�����
��� ��	��� ����

FIG. 4. Procedure to make a
binary tree in the case of n=19,
n2=8, n3=3. �a� A binary tree of
magnitude 3�=n3�, where � repre-
sents leaf. �b� Replacing � nodes
with 3-perfect binary trees. �c�
Hanging 2�=n2−2n3� nodes. �d�
Replacing hanging nodes with
2-perfect binary trees. �e� Hanging
3�=n−2n2� nodes. �f� Remaking
the binary tree.

FORMULATION AND ASYMPTOTIC PROPERTIES OF THE… PHYSICAL REVIEW E 78, 021114 �2008�

021114-3



Mk�Sr,n� =
1

cn−1
�
nr=1

�n/2r−1�
nr

k�
T � �n	Sr,n�T� = nr�

=
1

cn−1
�
nr=1

�n/2r−1�

�
n2=2r−2nr

�n/2�

�
n3=2r−3nr

�n2/2�
¯ �

nr−1=2nr

�nr−2/2�
nr

kcnr−1

��
i=1

r−1

2ni−2ni+1� ni − 2

ni − 2ni+1
� . �11�

After some calculation �see Appendix A�, we have

Mk�Sr,n� =
1

cn−1
�

m=2r−2

�n/2�
2n−2m� n − 2

n − 2m
�cm−1Mk�Sr−1,m�

=
1

cn−1
�

m=2r−2

�n/2�
2n−2m�n − 2�!

�n − 2m�!m!�m − 1�!
Mk�Sr−1,m� .

�12�

Regarding Eq. �12� as a recursive equation about r,
Mk�S2,n� ,Mk�S3,n� , . . ., can be calculated iteratively from the
initial condition Mk�S1,n�=nk. The results of calculation of
this equation are shown as the ratio Mk�Sr,n� /Mk�Sr+1,n� in
Fig. 5 for k=1,2,3, and 4. From this figure, it is suggested
that

lim
n→�

Mk�Sr,n�
Mk�Sr+1,n�

= 4k, �13�

and that the speed of convergence of Mk�Sr,n� /Mk�Sr+1,n� is
more slowly for larger r. These properties are demonstrated
analytically in the following section.

V. ASYMPTOTIC PROPERTIES

In this section, we discuss some asymptotic properties of
Mk�Sr,n� /Mk�Sr+1,n� for large n. Using the formulas �8� re-
peatedly, we obtain

F�k���,�;	;x� =

�� + k�
�� + k�
�	�


���
���
�	 + k�

�F�� + k,� + k;	 + k;x� .

Then, using the Gauss formulas �6� yields

F�k���,�;	;1�

=

�� + k�
�� + k�
�	�


���
���
�	 + k�

�	 + k�
�	 − � − � − k�


�	 − ��
�	 − ��

=

�� + k�
�� + k�
�	 − � − � − k�


���
���
�	 − � − ��

�	�
�	 − � − ��

�	 − ��
�	 − ��

=

�� + k�
�� + k�
�	 − � − � − k�


���
���
�	 − � − ��
F��,�;	;1� , �14�

where F�k��� ,� ;	 ;1��	F�k��� ,� ;	 ;x�	x=1 hereafter.
Specifically, in the case of �= �2−n� /2, �= �3−n� /2 and

	=2, Eq. �14� becomes

F�k��2 − n

2
,
3 − n

2
;2;1�

=
1

2k

�n − 2�!�2n − 2k − 3�!!
�n − 2k − 2�!�2n − 3�!!

F�2 − n

2
,
3 − n

2
;2;1� .

�15�

From Eq. �5�, the kth moment of S2,n has the form

�
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FIG. 5. kth moment ratio of
Sr,n to Sr+1,n for k=1 �a�, k=2 �b�,
k=3 �c�, and k=4 �d�.
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Mk�S2,n� =
2n−2

cn−1
�
l=0

k

al,kF
�l��2 − n

2
,
3 − n

2
;2;1� ,

where a�,k is a constant, and ak,k=1 and ak,k−1=k�k+1� /2 is
proved inductively. Furthermore, by using Eqs. �7� and �15�,

Mk�S2,n� = �
l=0

k

al,k
1

2l

�n − 2�!�2n − 2l − 3�!!
�n − 2l − 2�!�2n − 3�!!

�16�

is derived.
Then, the asymptotic form of Mk�S2,n� is derived as

Mk�S2,n� =
nk

4k�1 +
k2

2n
+ O�n−2�� . �17�

Calculation from Eq. �16� to Eq. �17� is explained in Appen-
dix B.

Similarly, in the case of r=3, Mk�S3,n� has the form

Mk�S3,n� =
1

cn−1
�
m=1

�n/2�
2n−2m�n − 2�!

�n − 2m�!m!�m − 1�!
Mk�S2,m�

=
1

cn−1
�
m=1

�n/2�
2n−2m�n − 2�!

�n − 2m�!m!�m − 1�!
mk

4k

��1 +
k2

2m
+ O�m−2��

=
1

4k Mk�S2,n� +
k2

2
Mk−1�S2,n� + O�nk−2�

= � n

42�k�1 +
3k2

2n
� + O�nk−2� , �18�

where we note that

1

cn−1
�
m=1

�n/2�
2n−2m�n − 2�!

�n − 2m�!m!�m − 1�!
ml = Ml�S2,n� .

Furthermore, from Eqs. �17� and �18�,

Mk�Sr,n� = � n

4r−1�k�1 +

rk

2

2n
� + O�nk−2� �19�

is suggested. Here 
r is a constant determined as follows.
From Eq. �17�, we have 
2=1 immediately. Substituting Eq.
�19� into Eq. �12�, we obtain

Mk�Sr+1,n� =
1

cn−1
�
m=1

�n/2�
2n−2m�n − 2�!

�n − 2m�!m!�m − 1�!� m

4r−1�k

��1 +

rk

2

2m
+ O�m−2��

= � n

4r��1 +
�4
r + 1�k2

2n
� + O�nk−2� .

On the other hand,

Mk�Sr+1,n� = � n

4r�k�1 +

r+1k2

2n
� + O�nk−2�

is obtained from the definition of 
r+1. Thus we have


2 = 1,


r+1 = 4
r + 1,

and solve it easily as


r =
1

3
�4r−1 − 1� .

Consequently, the asymptotic form of Mk�Sr,n� is expressed
as

Mk�Sr,n� = � n

4r−1�k�1 +
�4r−1 − 1�k2

6n
� + O�nk−2� .

We also derive

Mk�Sr,n�
Mk�Sr+1,n�

=
� n

4r−1�k�1 +
�4r−1 − 1�k2

6n
�

� n

4r�k�1 +
�4r−1 − 1�k2

6n
� + O�n−2�

= 4k�1 −
4r−1k2

2n
� + O�n−2� . �20�

Therefore Eq. �13� is proved. This equation is an extended
form of Horton’s law. Moreover, the speed of convergence of
Mk�Sr,n� /Mk�Sr+1,n� is more slow for larger r, because of the
term 4r−1k2 in Eq. �20�.

Especially in the case k=1, Eq. �20� turns into

E�Sr,n�
E�Sr+1,n�

= 4 −
4r

2n
+ O�n−2� . �21�

Then, the Horton’s law of stream number

lim
n→�

E�Sr,n�
E�Sr+1,n�

= 4 �22�

is reproduced.
From Eq. �21�, we define R�n� as

R�n� �
1

4r−1�4 −
E�Sr,n�

E�Sr+1,n�
� =

2

n
+ O�n−2� . �23�

It is noted that R�n� is independent of r if O�n−2� terms are
neglected. R�n� obtained from the data in Fig. 5�a� is illus-
trated in Fig. 6.

VI. DISCUSSION AND SUMMARY

In the present paper, we calculated Mk�S2,n� by hanging
the perfect binary trees sequentially �Eq. �5�� and derived the
recursive equation �12�. Then, we calculated this equation
numerically �Fig. 5�. Moreover, we proved the Horton’s law
of stream numbers �22� and �21� and extended relations �13�
and �20� by using this recursive equation. The equiprobable
model is a special class of binary-tree selection. So our result
is not applicable directly to every class of branching pattern
since our result is all based on the equiprobable binary trees
�20�.

It is noted that the exact expression of Mk�S2,n� �Eq. �5��
is an extension of the result by Werner �18�. And Eq. �13� is
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natural generalization of the Horton’s law �2�. Viennot �21�
mentioned that Moon �22� implied Eq. �21� using generating
function method. And related results have also been obtained
by generating function method �17�. Although our method is
not based on generating function, our result partially contains
those obtained by generating function method. There are sev-
eral results about the analysis of the higher-order �or rth
order� streams �22–25�. Our method can be extended natu-
rally to the case of higher-order moments and higher-order
streams. The above procedure of successive hanging of per-
fect binary trees is viewed as an addition of fine structure
successively to coarse structure. This idea is similar to the
concept of renormalization �26,27�. We expect that our
method can be reconsidered from the viewpoint of renormal-
ization.
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APPENDIX A: DERIVATION OF EQ. (12) FROM EQ. (11)

Let us derive Eq. �12� from Eq. �11�. By changing the
order of summation

�
nr=1

�n/2r−1�

�
n2=2r−2nr

�n/2�
= �

n2=2r−2

�n/2�

�
nr=1

�n/2r−2�
,

�
nr=1

�n/2r−2�

�
n3=2r−3nr

�n2/2�
= �

n3=2r−3

�n2/2�

�
nr=1

�n/2r−3�
, . . . ,

we can rewrite Eq. �11� as

Mk�Sr,n� =
1

cn−1
�

n2=2r−2

�n/2�

�
n3=2r−3

�n2/2�
¯ �

nr=1

�nr−1/2�
nr

kcnr−1

��
i=1

r−1

2ni−2ni+1� ni − 2

ni − 2ni+1
�

=
1

cn−1
�

n2=2r−2

�n/2�
2n−2n2� n − 2

n − 2n2
�

� �
n3=2r−3

�n2/2�
2n2−2n3� n2 − 2

n2 − 2n3
�¯

� �
nr=1

�nr−1/2�
nr

kcnr−12nr−1−2nr� nr−1 − 2

nr−1 − 2nr
� . �A1�

Similarly, Mk�Sr−1,n2
� is written as

Mk�Sr−1,n2
� =

1

cn2−1
�

n3=2r−3

�n2/2�
2n2−2n3� n2 − 2

n2 − 2n3
�¯

� �
nr=1

�nr−1/2�
nr

kcnr−12nr−1−2nr� nr−1 − 2

nr−1 − 2nr
� .

�A2�

Comparing Eqs. �A1� and �A2�, we have Eq. �12� �note that
the factor �n3=2r−3

�n2/2�
¯ commonly appears in Eqs. �A1� and

�A2��.

APPENDIX B: DERIVATION OF EQ. (17) FROM EQ. (16)

Considering the rough approximation

1

2l

�n − 2�!�2n − 2l − 3�!!
�n − 2l − 2�!�2n − 3�!!

=
1

2l

�n − 2��n − 3� ¯ �n − 2l − 1�
�2n − 3��2n − 5� ¯ �2n − 2l − 1�

l

2l

�
nl

4l ,

dominant terms in Eq. �16� is shown as

Mk�S2,n� = ak,k
1

2k

�n − 2�!�2n − 2k − 3�!!
�n − 2k − 2�!�2n − 3�!!

+ ak−1,k
1

2k−1

�n − 2�!�2n − 2k − 1�!!
�n − 2k�!�2n − 3�!!

+ O�nk−2�

=
1

2k

�n − 2�!�2n − 2k − 3�!!
�n − 2k − 2�!�2n − 3�!!

+
k�k + 1�

2k

�n − 2�!�2n − 2k − 1�!!
�n − 2k�!�2n − 3�!!

+ O�nk−2� .

�B1�

By using the expansion
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FIG. 6. Log-log plot of R�n� for r=1, 2, 3, and 4. Data points
are constructed from Fig. 5�a�, and thinned out randomly. The
dashed line indicates R�n�= 2

n .
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1

2n − l
=

1

2n
�1 +

l

2n
+ O�n−2�� ,

we have

�n − 2�!�2n − 2k − 3�!!
�n − 2k − 2�!�2n − 3�!!

=
nk

2k�1 − �3

2
k2 + 2k�1

n
� + O�nk−2� ,

�B2�

�n − 2�!�2n − 2k − 1�!!
�n − 2k�!�2n − 3�!!

=
nk−1

2k−1 + O�nk−2� . �B3�

By substituting Eqs. �B2� and �B3� into Eq. �B1�, Eq. �17� is
derived.
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